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Abstract

The systematic application of QCD-based parton model to the quantitative analyis of
high energy processes requires reliable parton distributions including 2nd-order QCD
evolution effects — both for consistency and for accuracy, especially in exceptional
kinematic regimes such as the small-x region. We discuss qualitative expectations and
present quantitative results on the behavior of 2nd-order evolved parton distributions in
this region which is particularly important for studying physical processes at future
accelerators. Direct comparisons with recently available 2nd-order parton distributions are
made in order to check consistency for future studies of high energy processes. Also
presented are quantitative results on the scheme-dependence of parton distributions in the
next-to-leading order approximation.

t This work is supported in part by the National Science Foundation Grant No. PHY-85-
07635.

JE

E

Operated by Universities Research Association Inc. under contract with the United States Department of Energy



A. RELEVANCE OF SECOND-ORDER QCD EVOLUTION OF PARTON
DISTRIBUTIONS

The QCD-based Parton Model provides the framework for most contemporary
studies of high-energy physical processes at current and future accelerators. Comparisons
of a wide variety of physical cross-sections calculated in this scheme to Leading Order in
the QCD effective coupling with experiment have led to remarkable qualitative
confirmation of the underlying theoretical framework and furnished the basis for a unified
approach to all high energy processes. In particular, the ability to use the renormalization
group technique to calculate the evolution of universal parton distribution functions to large
energy scales beyond those currently available provides a powerful tool to extend standard
model predictions to future accelerator ranges and to prepare for new discoveries. Recent
studies have called attention to the limitations of leading order calculations in exceptional
kinematic regions and for special processes. To achieve quantitative understanding of the
QCD-based parton model and to use it with confidence in projecting physical results at
future energies, it has become necessary to include additional terms beyond the leading
order in a systematic and self-consistent manner.

To make our discussions more concrete, let us write the basic formula for a generic
high-energy process

A + B

C + X (1)

in the QCD-based parton model as

0 upocx = 4 ® apac @ "ztz’ (2)

where f Aa is the distribution function of parton a in the hadron A4, ¢ is the hard

scattering cross-section for the partonic process, and ® denotes a convolution integral in the
fractional momentum variable for the parton involved. The leading order approximation
involves keeping only the lowest non-vanishing term in the perturbation series expansion of
the hard cross-section & and of using scale-dependent parton distributions f Aa obtained

by solving the QCD evolution equations with 1-loop splitting functions.

In recent years attention has increasingly been drawn to the importance of Next to
Leading Order corrections to the hard cross-section ¢ for the Drell-Yan process,” to
direct photon production,2 to inclusive 2 jet-production,3 and to heavy flavor production.
In order to explore the full physical implication of these results it is important also to
understand the behavior of parton distribution functions calculated to the corresponding
order in the QCD perturbation expansion. In fact, this is absolutely required because both
o and f Aa, as they appear on the right-hand side of Eq.(2), are renormalization-scheme-
dependent (as well as scale-dependent) beyond the leading order approximation. Since the
physical cross-section on the left-hand side cannot depend on the renormalization scheme,
one must use hard cross-sections and parton distribution functions defined in the same
scheme and calculated to a consistent order to obtain meaningful results. Specifically, the
study of 1-loop corrections to the hard cross-section requires the use of the matching
distribution functions obtained with 2-loop evolution kernels. Together, they provide the
Next-to-Leading- Approximation to the physical cross-section in the QCD-based parton
model formalism.
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Nominally, the inclusion of the second-order evolution kernel in the calculation of
the scale-dependent parton distribution functions yields order as/r corrections to the
leading order results. However, this is not necessarily true over all kinematic regions. Just
as for the case of hard scattering cross—section,l'4 there are circumstances under which the
higher order kernel can be significant, or even dominant, compared to the leading one.
This consideration is especially relevant at present since the study of high energy processes
at current and future colliders places more and more emphasis on the "small-x" region,
where the parton momentum fraction variable x is approximately the ratio of the physical
energy scale of interest to the total available energy of the collision. An essential feature of
all such studies is that predicted cross-sections depend critically on the rapid growth of the
parton distribution functions with the energy scale in the small-x region. In many respects,
the small-x region beyond currently measurable (about x = 0.01 ) is an exceptional kinematic
region.5 It is therefore extremely important to determine how the evolution of the parton
distribution functions with the energy scale in this region is affected by the inclusion of
higher order QCD effects.

Several parton distribution function calculations including 2-loop evolution effects
have been performed in the context of QCD analysis of existing deep inelastic scattering
(and other lepton-hadron scattering) data.™ "> :9.10° gor reasons described above, this paper
focuses more on the implications of the second order kernel for the predicted behavior of
parton distributions in the small-x region beyond the currently accessable range (sections B
& C). In view of the increasing importance of the second-order distributions and the
complexity of the calculations involved, we also engage in the first systematic comparison
of available new parton distribution sets to assess the reliability of these "second generation”
distributions (section D). As we shall see,’ the result of this comparison is mixed. Finally,
we present quantitative results on the non-trivial scheme dependence of the parton
distributions beyond the leading order (section E).

B. CALCULATION OF PARTON DISTRIBUTIONS INCLUDING 2-LOOP EVOLUTION
KERNELS

The renormalization equation for the parton distribution functions reads:

d a
0 335 £, @ = P(xia)h ® 1,060 (3)

with a, = as(Q)/21r and

P(x,aﬂ_) = aﬂ_[ Pl(x) + aﬂ_'PZ(x) + wee ] (4)

The first order kernel P](x) is well-known. The complete second-order kernel Pz/x) is
quite involved;ll there is no need to reproduce it here. For reasons mentioned in the
introduction, however, it is useful to focus on the small-x region where the latter may have
a significant impact.

The evolution kernel can be partially diagonalized. To second-order, it consists of
two uncoupled non-singlet pieces Py o(x )t and a 2x2 singlet matrix which couples the
gluon and the singlet quark distributions. The non-singlet kernels do not contain terms



more singular than (/n x) at small x. The most singular terms of the singlet kernel
functions at small x are proportional to I/x. (A cursory look at the expressions for P o x)
may indicate the presence of /n“x/x as well as (In x)/x terms. However, in the MS-bar
scheme these terms cancel in the end.l3) Table 1 displays the leading terms of these
second-order kernel functions in the small-x region along with the familiar first-order
kernel functions.

1-Loop 2-Loop

F 1+ x2 20. 1
P(X)F CFl T x + ... ZNfTRCF—g—_;-P

F 2 2 20. 1
P(x) G ZNfTR[X+ (1 - x)] ZNfTRCG_Q_J_{+

G 1 2 20. 1 1
P(x) F CF p [1+ (1 -x)7] ZNfTRCF(-——g ;) + CFCG, i

2NFJ

G 1 1 2 R . 23. 2

P(x) ¢ ZCG{}-{ + T= -2+x-X ]+.. e [—T CG' + 3 CF] +

Table 1: Comparison of 1-Loop & 2-Loop Kernels at Small-x

Two features of the results in this Table are worth noting. First, the second-order
kernel functions P 2{ X )F F and P 2( X )F G contain the singular 1/x terms whereas the
corresponding first-order kernel functions P 1(x) F and P ( x)F G don’t. This singular part,
of course, easily overwhelms the o, factor multiplying the second-order kernel. Hence, the
evolution of the fermion (gquarks and anti-guarks) distribution functions at small-x will be
completely dominated b¥ the second-order kernel rather than the first-order one. Second,
the 1/x terms in P2( x)"G and P 2( x)" g are large in magnitude and opposite in sign with
respect to the corresponding terms in the first order kernel functions. Thus, the well-known
rapid growth of the gluon distribution at small-x seen in the usual leading order
calculations will be dampened by the inclusion of next-to-leading terms. These features
confirms the importance of studying the effects of the second-order kernel in quantitative
detail.

We solve numerically the integral-differential evolution equation, Eq.(3), with
arbitrary input distribution functions at a fixed value of Q ("QO") and arbitrary QCD
parameters AQCD' N 7 (# of quark flavors) and quark masses. A previously available first-
order evolution program”~ was rewritten to incorporate the much more complex second-
order kernel with particular attention to maintaining the efficiency of the numerical
calculation. In addition to performing the standard sum-rule tests, the new program, which
uses a new algorithm, was checked against the original one for accuracy. (The latter has
been extensively checked against other existing first-order parton distribution calculations
in the literature.) Intermediate results in the calculation were systematically plotted and




compared to expected qualitative behavior, in magnitudes and signs, of the analytic
expressions for the kernels and found to be satisfactory. The results presented below are
based on these calculations.

C. SMALL-X BEHAVIOR OF PARTON DISTRIBUTION FUNCTION INCORPORATING
2ND-ORDER EFFECTS

In order to see the effects due to the second-order evolution kernel, we first
compare parton distribution functions calculated with and without the Pz( x) term in Eq.(4)
using the same effective coupling ag and the same input distribution functions at Q,. Fig.1
shows some typical results obtained with the EHLQ distribution15 Set 1 as input at Qo =
4.0 GeV.

Plotted in Fig.la are the u-quark distribution in the range 10'4 < x < 0.8 at the
scale Q = 15 GeV obtained with Ist-order (dotted line) and Ist-plus-2nd-order (solid line)
evolution kernels. We see that the latter shows a much stronger growth at small x. This is
clear evidence of effects due to the positive 1/x terms in the 2nd order kernel functions
P 2( X )F F and Pz( x)F G (absent in the leading order) as described in the previous section.
The difference of the two distributions at x = 1074 is about 30%; this shrinks to a few
percent above x = 0.01.

In Fig.1b we show the corresponding resuits on the gluon distribution. In contrast
to the fermion case, the 2nd order calculation yields a flatter gluon distribution than the the
leading order one. This is, again, expected from the discussion of the previous section —
the most singular terms at small x for the 2nd order kernel have large coefficients (to
partially compensate for the extra coupling factor) and are opposite in sign to those of the
leading order ones.

Figs.lc & 1d show the corresponding plots of the u-quark and the gluon
distributions at Q = 100 GeV. The features are similar to those described for the 15 GeV
case. Table 2 quantifies the results shown in these plots. The distribution functions for
other quark flavors, not shown explicitly here, have analogous behavior. In particular, the
anti-u and anti-d quark distributions almost coincide with the corresponding quark
distributions at small x (due to the vanishing of the valence distributions at small x).

D. COMPARISON WITH OTHER 2ND-ORDER CALCULATIONS

Because of the significance of the 2nd order evolution in the small-x region where
rapid growth of the distributions takes place, it is of interest to compare different 2nd
order calculations of the QCD-evolved parton distribution functions in order to gain
confidence in the predictions at high energies. These results are also becoming more and
more important for quantitative next-to-leading-order QCD parton model analyses of
current collider experiments."~~ The currently available distributions cannot be calibrated
against each other because they are obtained from different initial distributions by fitting
different sets of experimental data. We decided to perform direct comparisons of recently
published parton distribution sets with corresponding ones generated by our calculation
using identical input distributions and (essentially) the same QCD parameters.



We obtain good agreement with the next-to-leading-order distribution functions of
DFLM8 (the set labelled FXNLLA available from the authors). In order to obtain a
meaningful comparison in this case, we should note that this set of distributions is defined
in a special renormalization scheme in which the deep inelastic scattering structure function
F, retains its simple relation to the parton distribution functions as in the naive parton
model. (We should refer to this as the DIS scheme; cf. Section E.) Thus, for the
comparison, we take the DFLM distributions at Q = 4 GeV, transform them into MS-bar
scheme distributions, then use the latter as input distributions to our evolution calculation
(which is based on the standard MS-bar scheme formulas for the kernels). The outcome of
this calculation is then compared with the DFLM distributions at arbitrary Q, again,
transformed into the MS-bar scheme at the relevant scale Q. Representative results of this
comparison are given in Table 3. The agreement is in general within a few percent. This
is acceptable considering the fact that interpolation formulas are used in extracting these
numbers from the respective sets, that the DIS-to-MS-bar transformation induces errors at
some level, and that minor differences in the definition of the coupling ag and in the
treatment of heavy quark thresholds may exist. It is worth noting that the DFLM
calculation is carried out in the moment space which involves the solution of a set of
coupled ordinary differential equations and the subsequent application of a delicate inverse
Mellin transform; whereas our calculation is done in x-space which involves the solution of
a set of coupled integral-differential equations. It is reassuring to see that the two entirely
distinct methods yield consistent resuits.

A similar comparative study is carried out on the recently available MRS
distributions.! Here we did not obtain acceptable agreement. This comparison is in
principle simpler than the above, because the MRS distributions are defined in the MS-bar
scheme. We can therefore use their distributions at a given Qo, unmodified, as input;
perform the evolution calculation; and compare directly the results at any Q. Fig.2
summarizes the main features of this comparison. The initial value Q, used for this
calculation is 3 GeV. :

In Fig.2a we show the u-quark distribution at Q = 15 GeV. Three curves are
drawn: the MRS distribution as provided by the authors’ (dotted line), the 2nd-order QCD-
evolved distribution according to our calculation (solid line), and (for reference later) the
1st-order QCD-evolved distribution using the same couplinzg and input distributions (dashed
line). The first two curves agree within 1% above x = 10™“; however, they disagree in the
small x region — differing by about 30% at x = 10'4. The MRS distribution shows a much
sharper rise in the small x region than our calculation. With respect to the lst-order
calculation, the MRS distribution is 60% larger at x = 10'4 compared to 30% for our 2nd-
order calculation. (Cf. also the resuits presented in Sec.C.)

Fig.2b shows the corresponding results for the gluon distribution. The difference
here is even more dramatic. Whereas our 2nd-order curve lies below the lst-order one (by
several percent) at small x, the MRS distribution rises much faster than the latter — being
larger by about 50% at x = 10'4! This behavior seems to contradict the expectation based
on inspection of the dominant terms of the evolution kernel at small-x as described in
Sec.B. Above x = 10'2, the two 2nd-order distributions approach each other, as seen in the
figure; however, they do not agree as well as in the case of the u-quark — there is about a
5% discrepency.



Fig.2c and Fig.2d show the same distributions as those in Figs.2a & 2b at the higher
energy scale Q = 100 GeV. The features are similar to those discussed above. The
comparison of other quark- and anti-quark distributions (not shown here) reveal similar
features as those for the u-quark.

E. THE DIS- vs. THE MS-SCHEME DISTRIBUTIONS

Second-order evolved parton distribution functions are necessarily renormalization-
scheme dependent -- since the perturbatively calculated Wilson coefficients are
renormalization-scheme dependent whereas the physically measurable structure functions
are not. (Cf. Eq.(2)) In practical calculations it is useful to acquire knowledge about the
actual size of the differences between the commonly used schemes for the various parton
distributions in important kinematic regions. This section addresses this question.

There are two schemes of practical interest. The MS-bar subtraction scheme is a
standard scheme to perform perturbative calculations of both hard cross-sections (Wilson
coefficients) and evolution kernels (anomalous dimensions). We refer to parton
distributions so defined as MS-bar scheme ones. It is process-independent and is
applicable to all orders of perturbation expansion. )

The other often used scheme, called the DIS scheme in Section D, is defined by the
practical requirement that the most commonly encountered deep inelastic scattering
structure function F, retain its leading-order relationship to the parton distribution
functions even in the next-to-leading approximation. This amounts to absorbing the 1-loop
MS-bar Wilson coefficients for F 2 into the definition of the parton distribution functions.
The limitations of the DIS-scheme are: (i) it is only viable in the next-to-leading
approximation (i.e. it cannot be generalized to higher orders); (ii) the other structure
functions F 3 and F; are not simple in terms of the parton distributions; and (iii) there is
no natural definition of the gluon definition (beyond the obvious requirement of the
momentum sum rule).

The quark distribution functions f4(x.Q) p in the DIS scheme are defined in terms
of the MS-bar scheme quark distributions f%(x.Q) » and gluon distribution fG( x.Q)pg as:

Py - (1+acim) e £x e e fxa, (5)

where c? G are the well-known Wilson coeffici::nts.16 Whereas there is no unique way of
defining t‘{xe gluon distribution in the DIS-scheme, for the purpose of the following
comparison, we use the following def inition:8

B, = (1+ 20 NCox) ® BxQpt a C () ®F (xQ) (6

where f5(x.Q) is the singlet quark distribution defined as the quark distribution summed
over all flavors. (This prescription amounts to extending, arbitrarily, the momentum sum-
rule relation to all moments of the distributions.)



Figure 3 shows typical results on the transformation between parton distributions in
the two distinct schemes. As we can see, whereas these two sets of distributions are
distinct at Q = 4 GeV, they become quite close to each other at Q = 15 GeV. This is
expected, since ag becomes small at large Q, and since the Wilson coefficients which enter
Egs.(5) and (6) are well behaved.

F. CONCLUSIONS

The systematic application of QCD-based parton model to the quantitative analyis of
high energy processes requires reliable parton distributions including 2nd-order QCD
evolution effects — both for consistency and for accuracy, especially in exceptional
kinematic regimes such as the small-x region. We discussed qualitative expectations and
presented quantitative results on the behavior of 2nd-order evolved parton distributions in
this region which is particularly important for the study of physical processes at future
accelerators. We also presented direct comparisons of our calculation with existing ones to
help bring about consistent results for future studies of all high energy processes. Finally,
since the definition of parton distribution functions necessarily becomes renormalization-
scheme dependent, we presented concrete results on the transformation between the
commonly used DIS- and MS-bar-schemes to display the quantitative features of this
scheme-dependence for the quark- and gluon-distributions in typical kinematic regions.
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Table 2: Comparison of lst- and 2nd-order-evolved Parton
Distribution Functions (Input: EHLQ-set 1, Q = &4 GeV)

X xU(x,Q)_1 xU(x,Q)_2 xG(x,Q)_1 xG(x,Q)_2
Q = 15 GeV
1.00E-04 8.26E-01 1.14E+00 3.74E+01 3.35E+01
4,10E-04 6.59E-01 8.47E-01 2.39E+01 2.19E+01
1.67E-03 5.59E-01 6.60E-01 1.46E+01 1.36E+01
6.62E-03 5.25E-01 5.71E-01 8.38E+00 7.93E+00
2.43E-02 5.48E-01 5.62E-01 4 . 47E+00 4 .28E+00
7.29E-02 5.82E-01 5.80E-01 2.19E+00 2.09E+00
1.65E-01 5.47E-01 5.38E-01 9.05E-01 8.63E-01
2.95E-01 4.09E-01 3.99E-01 2.75E-01 2.66E-01
4 .50E-01 2.18E-01 2.11E-01 5.35E-02 5.26E-02
6.20E-01 6.95E-02 6.69E-02 4.77E-03 4.97E-03
8.00E-01 7.46E-03 7.13E-03 8.79E-05 9.83E-05
Q = 100 GeV

1.00E-04 2.01E+00 "2.57E+00 7.98E+01 6.96E+01
4,.10E-04 1.34E+00 1.64E+00 4.46E+01 3.95E+01
1.67E-03 9.23E-01 1.07E+00 2.33E+01 2.11E+01
6.62E-03 7.06E-01 7.66E-01 1.12E+01 1.03E+01
2.43E-02 6.22E-01 6.36E-01 4, 84E+00 4. 50E+00
7.29E-02 5.86E-01 5.79E-01 1.87E+00 1.74E+00
1.65E-01 4.98E-01 4.82E-01 6.15E-01 5.62E-01
2.95E-01 3.35E-01 3.20E-01 1.50E-01 1.38E-01
4 . 50E-01 1.60E-01 1.50E-01 2.59E-02 2.22E-02
6.20E-01 4 .49E-02 4.12E-02 2.19E-03 1.78E-03
8.00E-01 4.08E-03 - 3,55E-03 4,.90E-05 3.28E-05



Table 3: Comparison of DFLM Set-FXNLLA with 2nd-order
evolution Calculation (Input: FXNLLA Q = 4 GeV)

X xU_DFLM xU(x,Q)_2 xG_DFLM xG(x,Q)_2
Q = 15 GeV
1.00E-04 1.20E+00 1.12E+00 3.10E+01 3.07E+01
4.79E-04 8.70E-01 8.55E-01 1.96E+01 1.95E+01
2.27E-03 6.91E-01 6.80E-01 1.17E+01 1.18E+01
1.03E-02 6.30E-01 6.31E-01 6.57E+00 6.58E+00
4.09E-02 6.50E-01 6.54E-01 3.07E+00 3.08E+00
1.19E-01 6.29E-01 6.30E-01 9.98E-01 1.02E+00
2.49E-01 4.56E-01 4.60E-01 2.51E-01 2.56E-01
4.14E-01 2.25E-01 2.27E-01 5.88E-02 5.88E-02
6.00E-01 6.97E-02 6.97E-02 1.58E-02 1.61E-02
8.00E-01 8.09E-03 7.67E-03 0.00E+00 3.22E-03
Q = 100 GeV

1.00E-04 2.49E+00 2.38E+00 6 .46E+01 6.42E+01
4.79E-04 1.55E+00 “1.51E+00 3.54E+01 3.49E+01
2.27E-03 1.02E+00 1.01E+00 1.76E+01 1.75E+01
1.03E-02 7.60E-01 7.67E-01 7.82E+00 7.81E+00
4.09E-02 6.72E-01 6.79E-01 2.79E+00 2.81E+00
1.19E-01 5.80E-01 5.83E-01 7.16E-01 7.51E-01
2.49E-01 3.75E-01 3.82E-01 1.55E-01 1.61E-01
4.14E-01 1.65E-01 1.68E-01 3.25E-02 3.30E-02
6.00E-01 4 .45E-02 4 .55E-02 0.00E+00 7.08E-03
8.00E-01 4.17E-03 4.07E-03 0.00E+00 7.70E-04
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Table 4: Comparison of MRS Set-EB with 2nd- and lst-order
Evolution Calculations (Input: MRS set at Q = 3.0 GeV)

.00E-04
.10E-04
.67E-03
.62E-03
.43E-02
.29E-02
.65E-01
.95E-01
.50E-01
.20E-01
.00E-01

.00E-04
.10E-04
.67E-03
.62E-03
.43E-02
.29E-02
.65E-01
.95E-01
.50E-01
.20E-01
.00E-01

xU_ MRS
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.28E+00
L,20E-01
.98E-01
.82E-01
L44E-01
.39E-01
.13E-01
.99E-01
.19E-01
.88E-02
.81E-03

.57E+00
.57E+00
.02E+00
.27E-01
.97E-01
.39E-01
.71E-01
.34E-01
.65E-01
.58E-02
.80E-03
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xU_2nd

.01E+00
.73E-01
.22E-01
.47E-01
.29E-01
.34E-01
.12E-01
.Q0E-01
.20E-01
.93E-02
.98E-03

.04E+00
.36E+00
.35E-01
.99E-01
.88E-01
.37E-01
.72E-01
.36E-01
.66E-01
.61E-02
.89E-03

Q
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xU_1lst
= 15 GeV

.29E-01
.01E-01
.27E-01
.00E-01
.11E-01
.32E-01
.19E-01
.10E-01
.28E-01
.27E-02
.45E-03

= 100 GeV

.49E+00
.05E+00
.77E-01
.28E-01
.65E-01
.38E-01
.84E-01
.49E-01
.75SE-01
.96E-02
.30E-03
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xG_MRS

.67E+01
.61E+01
.45E+01
.98E+00
.17E+00
.97E+00
.75E-01
.33E-01
.82E-02
.30E-03
.35E-04

.30E+01
.52E+01
.19+01
.03E+01
.44E+00
.71E+00
49E-01
.37E-01
.38E-02
.20E-03
.03E-05
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xG_2nd
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FIGURE CAPTIONS

1. Comparison of first and second order evolved parton distributions. Plotted are x times
the probability distributions. Parton species and Q-values are as labelled. Initial
distributions at Q = 4. GeV are taken from EHLQ set 1.

2. Comparison of first and second order evolved parton distributions with the corresponding
‘MRS the distributions. Plotted are x times the probability distributions. Parton species
and Q-values are as labelled. Initial distributions at Q = 3.0 GeV are the same for all
sets.

3. Comparison of DIS scheme and MS-bar scheme parton distributions. Plotted are x times
the probability distributions. Parton species and Q-values are as labelled. Initial
distributions at Q = 4. GeV are taken from EHLQ set 1.



80

2 OX

A9 Gl =
!

O 1D uon(9

1

1

(V)

X
Ol ol .0l Ol
|- 2~ e b
] ] _ ONO)
<120
10
/// 490
\
\
\
\
\ 80
— y
2 Nx
L —mme- 10l
A99 Gl = O iD yonb-n
| 1 |




()

X
o ;oL o o
00
t'0
80
A
9|
2 ox 0=
| ox
_ b2
A9 OOl = D ibuon|y A9 Q0! = O b Yionb-n
] | | | 1 ]




(9) (v)
X X

Ol ot ol ol 80 Ol L0t ot Lot

T _ — 00

- 420
\
\
\
- Y 10
N\
- // 4190
. .
— -oc ,4
- 2 NX —— 480
| NX ———emm 3
- L YO
SHN  eeeeeene Hop SHIN  ceeeeeennes ....
A8 G| =D ibuon|9 3 - A9 G| =0 Ibyionb-n 32

i | | L | 1




z b4
(p)

Ol Ol

2= - Ol

e

ABD OOl =DouonY  1qg [ A2 00L=D Iosponb-n 372

1 | 1 1 l |




(V)
X
O O 0,0
_ T ¥ 00
A99 + =D jpyionb-n

1’0

¢0

¢0

0

G0

80

3 = D b uon
N8O w O _o_ 00l

1




(2)

X
80 Jol oL _oL ol
| 2l ¢ 174 000
4620
4060
4G2°0
SW NX
© SIg X ———--- 0
- A®9 G| = D b uonH 0¢ A3 G| = D 10 yonb-n
| l 1 | i 1




